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Abstract 

We are developing the theory behind a new imaging modality which uses a single trans- 
ducer rotating about its center to launch a field radially outward and collect the backscattered 
(reflected) field. We use diffraction tomography techniques, based upon a linearized version 
of the field scattering equation, to form images of the medium surrounding the transducer. As 
there is one transducer which both transmits the incident field and measures the backscattered 
field, the operation mode is multimonostatic. 

1 Introduction 
Consider a single transducer which rotates about a fixed radius, Ro, launching pulses at each an- 
gular location, 0, and measuring the backscattered field. Operating in such a multimonostatic con- 
dition, we develop an imaging algorithm based upon a linearized description of the field scattering 
process. We summarize the operating conditions as follows: 

0 Transducer rotates at a fixed radius, &,, about the origin; 

0 Must use frequency diversity which implies an incident pulse; 

0 Multimonostatic reflection operating mode in which the single transducer emits a pulse and 
records the backscattered field at each angular location, 8; 

0 Geometry is that of Figure 1. 
The transducer is located at ro = & (cos 8, sin 8). 
The observation point (to be reconstructed) is located at r' = r' (cos e', sin e') where &, < r'. 
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Figure 1: Radial reflection geometry 

2 Derivation of Forward Model 
Use as fundamental equation the Helmholtz equation, 

[v2 + k2(r)] u(r, w )  = -p(r, w) ,  

where 
r = (2, y) = (T, 0) 
W is the temporal frequency, 

is the spatial coordinate, 

is the wavenumber of the inhomogeneous 
medium surrounding the transducer, 
is the total field, 
is the incident pulse. 

k(r> 

u(r, w> 
p ( r ,  4 

Add kou(r, w )  to both sides of Eqn. 1 where ko w/vo, and move the inhomogeneous term to 
the right hand side: 

Define the objectfunction as 

and express Eqn. 2 as 

We may use Green's theorem to cast the differential equation of Eqn. 4 into an integral equation, 

u(r, w )  = dr' G(r - r', w )  p(r', w )  + k; dr' G(r - r', w )  o(r') u(r'), (5) s s 
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where we have ignored the boundary conditions and 

u,(O, w )  M uf(0, w )  E P(w)kg / dr' G2(ro - r', w )  o(r') 

The primary source is 

(13) 

ui(r, w )  J dr' G(r - r', w )  p(r', w), 

so that Eqn. 5 reads 

u(r, w )  = ui(r, w )  + kg dr' G(r - r', w )  o(r') u(r', w).  J 
The scatteredjield is defined as 

us(r, w )  f u(r, w )  - ui(r, w )  = ko dr' G(r - r', w )  o(r') u(r', w). 2 J  
Evaluate it on the measurement surface, TO = (&, e), 

us(B, w )  = kg dr' G(r0 - r', w )  o(r') u(r', w). J 
Let the incident field be a point source located at ro, obeying 

[v2 + k;] ui(r, w )  = --P(w) S(r0 - r), 

(7) 

where P ( u )  is the incident pulse amplitude. NOTE: Antenna characteristics are not modeled. The 
incident field is then 

ui(r,w) = P ( w )  G(r0 - r ,w) .  (1 1) 

As is common, invoke the Born approximation, 

replace the totaljield by the incidentjield, and express Eqn. 9 as 

I P I 

Eqn. 13 serves as ourforward model. Express it using Eqn. 6: 
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Define the weighted scatteredjield as 

The division by the incident pulse spectrum is equivalent to a deconvolution in the time domain. 
Thus, this step performs the incident pulse deconvolution of the measured field. A more convenient 
expression to work with is obtained by differentiating Eqn. 15 by ko, 

Defin 

We then have 

(1 8) 
i 
2 

-- w'(O,2w) = / dr' G(r0 - r', 2w) o(r'). 

2.1 2.5-D Problem 
In cylindrical coordinates, let the measurement surface be at ro 
0 5 0 < 2 ~ .  Thus, Eqn. 18 becomes 

(&, 0,zO) for & fixed and 

--wye,2w) i = Lm r 'dr 'L2r  d0' 1: dx' G(r0 - r', 2w) o(r', e'), 
2 

00 

- - Lm r 'd r 'LZr  de' o(r', 0') 1, dx' G(r0 - r', 2w). (19) 

Express Iro - r'l in cylindrical coordinates: 

Defining 

R~ E + r'2 - 2&r' COS (e - e') , 
we note that 

i 
4 

dz' G(r0 - r', 2w) = -HA1)(2k0R). 
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Thus Eqn. 19 reads 

--wye,2w) i = - r'dr'121rd0' o(r', 0') Ht)(2koR) ,  
2 4 

w y e , 2 4  = -- ' Lm r'dr' L'" de' o(r', 0') Hi1)(2koR). 
2 

Hankel function expansion from G&R (Eqn.8.530): 

where & < r'. Substituting this into Eqn. 22 yields 

Fourier expand the object and weighted measured field functions as follows: 

2?r 

on(r') = l d0' o(r', 0') e-in", 
27r 

00 

n=-oo 

and 
21r 

wk(2w) = -!- 
27r 

d0 w(8,2w) e-in', 
00 

n=--oo 

Using Eqn. 27 to transform Eqn. 24, yields 

-L 2 Jn(2ko&) l m r ' d r ' H f ) ( 2 k ~ r ' )  x L21r d0 w'(eY2w) e-ime = 
n=-w 

47r 27r 

Using Eqn. 25 and 
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reduces Eqn. 29 to 
00 

w; (2w) = -rJm ( 2 k O h )  1 r'dr' H:) (2kor') om (r') . 

Define the Bessel function normalized field derivative as 

where we have used Eqns. 15 and 17, and express Eqn. 30 as 

w:,(2w) = Lrn r'dr' H:)(2kor') om(#). 

If we assume the object function, o(r, e), is real, we have from Eqn. 25 that 

o*-,(r') = om(?-'). 

Using this and the property of Hankel functions, 

we may solve for om (r) .  Define 

Pm(2w) = w:,(2w) + (-1)mw2m(2w), 

= 2 Lrn r'dr' Jm(2kor') om(r'). 

Eqn. 33 is proportional to the Bessel transform of the object, 

om(2ko) = lw r'dr' Jm(2k0r') om(r'), 

so, we may express it as 

1 
2 Om(2ko) = -Pm(2w). 

Explicitly expressing Eqn. 35 in terms of the measured field, we find 

Pm(2w) = v:,(2w) + (-1)?2m(2w), 
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Substituting Eqn. 36 into Eqn. 35, we find the “Fourier-Bessel Diffraction Theorem” for RRDT: 

om(2ko) = - 

Using the orthogonality of Bessel functions, consider the following integral 

we may invert this equation for o,(r): 

Substituting this into Eqn. 26 yields the reconstruction: 
00 

o(r, 0) = 1 eime Lrn kodko Pm(2ko) Jm(2kOr). 
m=-00 

(39) 

Substitute Eqn. 36 into Eqn. 39: 

For later on, define the integral in Eqn. 40 as 

and express EQn. 40 as 
00 

o(r,O) = - 8 4  Im(r) eime. 
m=-m 

We must now consider how to perform numerically the integral in Eqn. 41. There a potential 
problem with the J;’(2ko&) term which contains an infinite number of zeros along the real axis. 
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2.2 Extend the Integral of Eqn. 41 over the Entire Real Axis 
First some observations. The Fourier transform of the pulse is 

P ( w )  = lrn d t  p ( t )  eiwt, 

thus for a real pulse, we have 

P(-w) = P*(w).  

The polar Fourier transform of the measured field is 

thus we have 

u,(-w) = u",(w). 

Using these identities, we may express Im(r) as 

Adding Eqns 41 and 45, we have 

(43) 

which has extended the integral over the entire real axis. 

2.3 Performing the Integral of Eqn. 46 
The difficulty in integrating Eqn. 46 is the reciprocal of the Bessel function, Jm(2k0&), which 
has multiple zeros along the real axis. We circumvent this issue by continuing the integral into 
the complex w-plane and performing a contour integrtion. Care must be taken, however, since 
Jm(2kor) diverges in both the upper and lower half planes requiring us to express it as 

.. 
(47) 

and separating the integral into two. The one containing Hz)(2kor) is closed in the upper half 
plane, whereas the one containing H g )  (2kor) is closed in the lower hal€ plane. We have 

1 
J,(2kor) = 5 [H:)(2k0r) + H2)(2kor)] . 

where the C+ contour is closed in the upper half plane, and the C- contour is closed in the lower 
half plane. The C+ contour excludes the real w < 0 poles but includes the real w > 0 poles. The 
C- contour is the opposite. These are shown in Figure 2. 
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Figure 2: Integration contours. 

2.4 The Residues at the zeros of Jm(23C0&) 
In anticipation of requiring the residues of 1/Jm(2ko&) at the zeros of the Bessel function, we 
compute them as follows, 

th th zero of the m where amn is the n 
For negative poles, we have 

Bessel function, and j,, is the residue at the positive pole. 

Res {-} 1 = lim 2 + ainn 
z+--amn J,(Z) ’ kmn = 

z+-amn J,(x) 

(L”6pital’s Rule) 

(50) 
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2.5 Perform Complex Integration 
Replace the contour integrals of Eqn. 48 by the sum of the residues, 

Note 

(53) 

Define 
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Substitute Eqns. 49 and 51 into Eqn. 52 and use the above definitions, 

Note, using HiS2)( - -z )  = ( - l )mH$S2)(z) ,  we have 

So we have 

Finally, we note that P(w) and u,(w) are band limited to w E [Urnin, urnax] f a. 

+ 3i + Am(-wmn)) Nm(amn+)] . 
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Substituting Eqn. 57 back into Eqn. 40, we have the final form for the reconstruction 

3 Sanity Check: Test Reconstruction with a Symmetric Object 
The object is independent of angle, 

Then the polar transform of the field is 

Then Eqn. 60 reduces to 

Note, 

Using the symmetry properties of Eqns. 43 and 44, we find 

Ao(won) - Ao(-won) = 0, 

which reduces the reconstruction to 

where we have substituted, 

2 
jon = 

J-1 @on) - J1 (aon) - 
The reconstruction is pure real. 
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4 Fourier & Fourier-Bessel Transforms, & Fourier Diffraction 
Theorem 

= rcose,  
y = rsin0, 

The derivations used herein are based upon the Fourier-Bessel transform pair: 

Fm(k) = de lw rdr f(r, 0) e-ime Jm(kr), (67) 27r 

kx = k c o s 4 ,  
k, = ksin4, 

The Cartesian Fourier transform pair, 

to yield 

To determine the relationship between F(k,  4) and Fm(k), substitute the expansion 

m=-w 

into Eqn. 69 

M 

m=-w 
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. 

Using - de ei(m--n)8 = S,,, we may invert Eqn. 71 to find 
;7r 1- 

4.1 
Substitute Eqn. 37 into Eqn. 71 to obtain the Fourier Diffraction Theorem for RRDT, 

The RRDT Fourier Diffraction Theorem 

This is shown graphically in Figure 3. 
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Figure 3 : Radial reJlection Fourier difiaction theorem. 
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